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ABSTRACT

Fourier's approach to the problem of heat conduction

served as the introduction to Fourier series and Fourier

integral. This led later to the discrete Fourier transform

and recently to the fast Fourier transform. The fast

Fourier transform, serving as an expeditious means to

pass from functions of time to functions of frequency,

contributes to the analysis of time-invariant systems for

deterministic as well as stochastic situations.

ADMINISTRATIVE INFORMATION

The material of this report was prepared as an invited tutorial

talk for presentation at the Eighty-Fifth Meeting of the Acoustical Society

of America, held 10-13 April 1973, in Boston, Massachusetts. Funding

was provided under Task Area SF 53 532, Work Unit 1-1820-002.



HISTORICAL REMARKS ABOUT THE
FOURIER TRANSFORM

The development of the Fourier transform goes back about 150 years

to Jean Baptiste Joseph Fourier who was engaged at the time in trying

to solve the problem of heat conduction. The partial differential equation

of heat conduction is solved, for certain regions, by separation of

variables. This leads among other things, to an ordinary differential

equation which calls for a function proportional to its second derivative,

the factor of proportionality being a negative number. Functions

satisfying such differential equations are, of course, sinusoidal. To

adjust solutions to the specific conditions of a particular heat problem,

Fourier developed his famous theorem that any quite arbitrary and

irregular function, either periodic or given only in a finite interval, can

be expanded into an infinite sum of cosines and sines whose arguments

are integer multiples of one basic argument. If a function g(t) is periodic

with period T, or is given only for the interval 0 < t < T, then g(t) can

be written as
2 1 nt

g(t)= r a en
n= -

where

T 21•-i nt
a = g(t) e T dtn T

0

This relationship is expressed here by means of exponentials, making
ib

use of the well-known relation e = cos b + i sin b, rather than by means

of sines and cosines. The question of precisely describing those functions

which equal a convergent Fourier series has occupied mathematicians

ever since the time of Fourier. Fourier's method of expanding periodic

functions into series was extended to functions which are not periodic.

This led to the Fourier integral, customarily written as
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M21Tift
g(t) = I G(f) e dt

where

G(f) = fg(t) e-2gift dt

These formulas hold, of course, only if the improper integral f Ig(t) dt

is convergent. They associate a function of time, t, with a -

function of frequency, f. Until recently the term Fourier transform was

reserved for these formulas.

If we are interested in numrerical results we usually deal with a

situation in which a function is given at N, usually equidistant, points:

g(O), g(1)2 g(2), .. °, g(N-2), g(N-i), and we want to find Nquantities

G(O), G(1), °, G(N-1) such that

N-1 i kq
g(k) = , G(q) e

q=O

Orthogonality relations permit this system of N equations in N unknowns

to be readily solved for the G(q). Thus

1 N-1 - kq
G(q) g(k) e

k=0

The computation of the G(q), which we call the discrete Fourier transform,

from given g(k) is a very straightforward process involving N

multiplications and additions to find one G(q). To find all N values of

G(q), N2 operations are necessary; since N2 for large N is a very large

number, a shorter method was needed even for high-speed computers,

3



and the fast Fourier transform was developed.

THE FAST FOURIER TRANSFORM

A substantial saving of time can be achieved if the integer N has

many factors, There are various ways of describing the time saving

process of the fast Fourier transform (FFT), one of which follows:
6

Let N be a power of 2, for example, N = 64 = 2 Then the original

problem is equivalent to multiplying a 64 dimensional vector by a 64 by 64

matrix. None of the elements of the matrix are zero, since they are all
ib

of the form e which has an absolute value of 1. It can, however, be

shown that this matrix can be factored into two matrices, one having

32 non-zeros per row and per column, and the other having two non-zeros

per row and per column. We can then further factor the first matrix,

the one with the 32 non-zeros in each row and each column, and continue

the process until we obtain six matrices which have only two non-zero

elements in each row and in each column. Thus, instead of needing

642 = 4096 operations, we now need only 2 x 64 x 6 or 768 operations,

a substantial reduction in the number of operations required. Note that

reference to the matrices was made merely to illustrate how the FFT

saves time. There is no intention to suggest that the FFT should be

carried out by actually multiplying the matrices described.

19

Cooley, J.W. and J.W. Tuckey, "An algorithm for the machine

calculation of complex Fourier Series, " Math. Comp., vol. 10, pp. 297-

301, April 1965.
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APPLICATIONS

The following applications have been chosen to illustrate the use of

the Fourier transform in general and the fast Fourier transform in

particular. No effort has been made to select the most important or the

most recent applications. Note that the fast Fourier transform may be

used to advantage in any large problem in which the Fourier transform is

being used.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

One of the most important applications of the Fourier transform,

fast or otherwise, has to do with the solution of linear ordinary differential

equations with constant coefficients. For instance we study

M (m)
E b mg (t) = p(t)

m=0

where p(t) is a given function and bm are given coefficients, and where

g(m)(t) dmg(t) . The differential equation is to be solved for the

dtm

unknown function g(t). Applying the Fourier transform to both sides of

the differential equation changes the left-hand side into a product of the

transform G(f) and a function of the frequency f, such that we may write

G(f) = H(f) " P(f) where P(f) is the transform of p(t). From G(f) we then

go to g(t) by taking the inverse Fourier transform. To use this method,

it is, of course, important to be able to move easily from function

of time to function of frequency, and vice versa, and it is this facility

that the FFT provides.
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LINEAR TIME-INVARIANT SYSTEMS

Often we are in a worse predicament in which we are to solve the

equation

L b g(m)(t) = p(t)
m

without actually being given the coefficients bm. We are given only a

physical situation which takes input functions and furnishes output

functions. Such a physical system which is described by a linear differen-

tial equation with constant coefficients is called a linear time-invariant

system. The problem is to find g(t) if p(t) is given. We have to find

the function H(f) without using the coefficients b . By assuming thatm

we have before us a physical system, we make an experiment with an

input which is sinusoidal with a particular frequency, say f0 " Then a

simple analysis shows that H(f 0 ) becomes the ratio of output to input.

The disadvantage of this method is that it gives the function H(f) for

only one particular f; so then for each f desired, another experiment

must be made.

A more expeditious way of finding H(f) would be to choose p(t) such

that P(f) = 1, so that the corresponding G(f) will be the function H(f)

which governs the system. But it is shown in the standard books on

Fourier transforms that the inverse Fourier transform of the constant 1

is the Dirac function. If we find the response of our system to a Dirac

function, we will have a function h(t), which we call the impulse response

whose Fourier transform is If(f), the so-called transfer function. Now

if we want to find the g(t) that goes with a given p(t), we first find

P(f), the Fourier transform of p(t). Then G(f) = H(f) * P(f), and g(t)

is the inverse Fourier transform of G(f).
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A practical application of this method, described to me by a colleague,
.2

Theo Kooij, concerns the prediction of the echo from aii u•derwater

ob-ject for various sonar signalsi.-. Assuming that the echo can be

considered as output of a linear time-invariant system, we find the

response to a Dirac function by finding the echo to the explosion of an

explosive charge. This echo is the function h(t) associated with the

system (or more exactly a constant multiple thereof). We digitize the

hydrophone output and find the fast Fourier transform, which gives us

H(f). For any sonar- signal whose,,'echo;we want •to find,. we Ifirst•'find the

Fourier transform, which can be done explicitly in many cases, and then

multiply it by H(f) and take the fast inverse Fourier transform of the product.

Thus the echo for various sonar signals can readily be found.

Another example of a time-invariant linear system is in connection

with the response of a non-uniform beam to a transient forcing function.

Such a situation is described by Francis Henderson in his report,

"Transient Response Calculation in the Frequency Domain with General

Bending Response Program. ,,3" In this case the unknown function is either

the displacement or the moment, each a function of two variables, time t

and longitudinal coordinate x. Here we have a differential equation

which, after applying the Fourier transform with respect to the variable t,

still contains derivatives with respect to the variable x. A difference

equation scheme is used by dividing the x interval into, say, M sub-

intervals. The differential equation then leads to a system of M linear

equations which contain the frequency f as a parameter. This system

must be solved for a large number of values of the frequency f. These

2 Personal Communication

Henderson, F., "Transient Response Calculation in the Frequency

Domain with General Bending Response Program, " Naval Ship Research

and Development Center Report 1613, February 1971.
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solutions are obtained by utilizing the fact that the matrix in question has

zeros in most positions except in the vicinity of the main diagonal. After

having obtained the solution as functions of frequency, we then obtain the

solution as a function of time by means of the inverse fast Fourier

transform.

STOCHASTIC PROCESSES

In the foregoing cases, a linear time-invariant device connected an

input and an output function. There are, however, many physical situations

in which it is more meaningful to consider the input and the output, not

as deterministic functions of time, but as stochastic processes. For

instance, we might be interested in studying the interrelation between the

heights of the waves in the ocean and the response of a ship. One such
4

study has been made by M. K. Ochi and W. E. Bolton, in which they

investigate the interrelation between the input stochastic process, given

by the wave height at a chosen point in the ocean, and the output stochastic

process, the response of the ship. The connection between input and

output stochastic processes can again be described by means of the

impulse response h(t) or the transfer function H(f), its Fourier transform,

but the formulas look a bit different. Here, S(f), the so-called power

spectral density - often called simply the power spectrum - of the input

stochastic process is related to U(f), the power spectrum of the output

stochastic process, by means of

u(f) = H(f)12 S(f).

The power spectrum S(f), and likewise U(f), is a function of frequency

characterized by the property that the integral over a frequency interval

Ochi, M. K. and W. E. Bolton, "Statistics for Prediction of Ship

Performance in a Seaway, " International Shipbuilding Progress, Vol. 20,

No. 222 (1973).
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f2

(f1 1 f2 ) namely 1f S(f) df represents the contribution to the variance
f1

from that frequency interval. (This definition by an integral explains

why the longer name "power spectral density" is somewhat more precise

than "power spectrum".) The power spectrum can be found as the

Fourier transform of the autocorrelation which in turn is found from an

observed particular realization of the stochastic process. An alternate

way of computing the power spectrum, and here we refere to the discrete

case for N given points, is to first find the Fourier transform of the

given data, and to then find the squares of the absolute values. Before

the introduction of the FFT this latter method was found to be much

more time consuming than finding the autocorrelation for a certain number

of lags and then its Fourier transform. However, the FFT now makes this

alternate method, which does not use the autocorrelation, much faster

than the method which uses autocorrelation,

Returning to our discussion of the interrelation of two stochastic

processes (the wave height in the ocean and the response of a ship), let us

consider a possible way of finding the function H(f), or the square

IH(f) 2, known among naval engineers as the response amplitude operator.

If we create waves of a certain frequency around a ship model, we can

observe the response of the model, which may be a displacement, a

force, a moment, whatever quantity we want to study. Then H(f), the

transfer function at a particular frequency, equals the ratio of output

to input for a sinusoidal wave. Once the function H(f) is determined, or

more precisely, once the functions H(f) with respect to each interesting

response are determined, the corresponding power spectra of the

responses are readily found for any given power spectrum of the waves

of the ocean.

9



SIGNAL ANALYSIS

We have thus far given examples of finding the relation between the

input time function and the output time function by first finding the input

as a function of frequency and then by a mere multiplication finding the

output first as function of frequency and then, by inverse Fourier

transform, as function of time. Sometimes, however, we have problems

which do not require that all of these steps be taken. For instance,

suppose we are listening to underwater sound in order to find out whether

there are any interesting sound sources in the water which we would like

to identify. We can consider the underwater sound as a stochastic process

and use the time-series obtained by digitizing the output of a hydrophone

to compute the power spectrum of the underwater sound. We need not

subject the input stochastic process to a linear time-independent operation,

but can be satisfied with studying the power spectrum of the underwater

sound. We observe the characteristic features of the power spectrum, the

location of its peaks and the like, and use this observation to compare it

with previously obtained power spectra and store its essential characteristics

for later comparisons. In this problem, we need only to perform a direct

Fourier transform, the inverse Fourier transform is not needed.

A quite similar application has to do with listening to one of our own

vessels. We again find the power spectrum and identify from it

objectionable sources of sound on the vessel with the view of making the

vessel more nearly silent. In this application, many of the computer

programs developed for detection of objects by underwater sound are

used.

TURBULENCE STUDIES

One of the early applications of the power spectrum was in the study

of turbulence. We are concerned with a fluid motion for which it is

meaningful to consider the velocity as a stochastic process. To get better

insight into the phenomenon we use the FFT to determine the power

10



spectrum. In calling the fluid motion a stochastic process we need to give

some further explanation. Thus far we have referred to stochastic

processes which depend on time and on chance. A phenomenon depending

on chance and on a coordinate x may just as well be called a stochastic

process. In general, we may study stochastic processes that depend

on chance, on time, and on the three coordinates x, y, z. In the case

of a function of time we are led to a Fourier transform depending on

frequency, where frequency has the dimension of time to the power minus

one; frequency gives the number of waves per unit of time. A function of

x, of length, yields a Fourier transform depending on inverse length,

which may be called spatial frequency or wave number, giving the number

of waves per unit length. In the study of turbulence we deal with stochastic

processes depending on time as well as with those depending on space.

PICTURE PROCESSING

Another application of Fourier analysis to functions of spatial

coordinates is met in the field of picture processing. If, for instance, we

want to remove what may be called optical noise from a picture, we

can often do so by filtering, which in turn is done by first finding the

Fourier transform, then removing components of undesirable spatial

frequencies and finally taking the inverse Fourier transform.

CONCLUDING REMARKS

In conclusion, attention should be called to the fact that the applications

of the FFT are, of course, also applications of high-speed computers. It

is no accident that the FFT was developed at a time when means were

available to attack problems involving very many points, in situations

where the FFT could show its vast superiority over other methods.

11



INITIAL DISTRIBUTION

Copies

2 CHONR
1 Dr. L.D. Brain(432)
1. Dr. R.J. Lundegard (430)

2 USNA
1 Dept of Math
1 Tech Lib

2 NAVPGSCOL
1 Lib, Tech Rep Sec
1 Math Dept

1 NROTC

1 NAVWARCOL

1 NAVSHIPYD BREM

1 NAVSHIPYD BSN

1 NAVSHIPYD CHASN

1 NAVSHIPYD MARE ISLAND

1 NAVSFHPYD NOR VA

1 NAVSHIPYD PEARL

1 NAVSHIPYD PHILA

1 NAVSHIPYD PTSMH

12 DDC



CENTER DISTRIBUTION

Copies

1 01

1 18-1808-1809

1 1805

1 1802.1

1 1802.2

1 1802.3

50 1802.4

1 183

1 184

1 1842

1 1842.1

1 1843

1 1844

1 1844 (F. Henderson)
1 185

1 186

1 188

1 189

1 1892

1 1506 (Dr. M.K. Ochi)

1 19

1 1931 (Mr. Theo Kooij)

13



UNCLASSIFIED
Socurit' Classification

DOCUMENT CONTROL DATA - R & D
'Svcturity classification of title, body of abstract and inrdexingi annotation nmust tbe entered when the overall report Is classified)I O IGINA IING ACTIVITY (Corporate author)I 2a1. REPORT SECURITY CLASSIFICATION

Naval Ship Research and Development Center UNCLASSIFIED

Bethesda, Maryland 20034 21. GROUP

3REPORT TITLE

Some Applications of the Fast Fourier Transform

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final
5. AUTHOR(SI (First name, middle initial, last name)

Feodor Theilheimer

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7h. NO. OF REFS

July 1973 15 4
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJECT NO. 4231
Task Area SF 53 532

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

Work Unit 1-1820-002 this report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Ship Systems Command

13. ABSTRACT

Fourier's approach to the problem of heat conduction
served as the introduction to Fourier series and Fourier
integral. This led later to the discrete Fourier transform and
recently to the fast Fourier transform. The fast Fourier
transform, serving as an expeditious means to pass from
functions of time to functions of frequency, contributes to the
analysis of time-invariant systems for deterministic as well
as stochastic situations.

DD FORM (PAGE 1)DD NOV 1473 UNCLASSIFIED
S/N 0101.807-680 1 Security Classification



UNCLASSIFIED
Sew'urity Cla~sification_____ ___ ________

I LINK A LINK B LINK C
KEY WORDS -

ROLE WT ROLE WT ROLE WT

Fast Fourier Transform
Linear Time-Invariant System
Stochastic Process
Signal Analysis

FORM I (BACK)
DDI NOV.. .a73 UNCLASSIFIED
(P AGE- 2) Security Classification


